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Abstract
The two-terminal reliability, known as the pair connectedness or connectivity
function in percolation theory, may actually be expressed as a product of
transfer matrices in which the probability of operation of each link and site is
exactly taken into account. When link and site probabilities are p and ρ, it
obeys an asymptotic power-law behaviour, for which the scaling factor is the
transfer matrix’s eigenvalue of largest modulus. The location of the complex
zeros of the two-terminal reliability polynomial exhibits structural transitions
as 0 � ρ � 1.

PACS numbers: 89.20.−a, 05.50.+q, 02.10.Ox

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Since the original work of Moore and Shannon [1], network reliability has been a field devoted
to the calculation of the connection probability between different sites of a network constituted
by edges (links, bonds) and nodes (vertices, sites), each of them having a probability of
operating correctly (the reliability). This field, although mainly developed in an applied
background [2], is strongly related to graph theory [3, 4], combinatorics and algebraic
structures [5, 6], percolation theory [7, 8], as well as numerous lattice models in statistical
physics [9–12]. For instance, the all-terminal reliability RelA, i.e., the probability that all nodes
are connected, is derived from the Tutte polynomial, an invariant of the associated graph, when
all edges have the same reliability p (0 � p � 1). This polynomial appears in the partition
function for various Potts models and has been calculated for several families of graphs
[9–11]; the location of its complex zeros has also been studied [10, 11, 13]. The two-terminal
reliability Rel2(s → t), the probability that a source s and a destination t are connected, is
known in percolation theory as the connectivity function or pair connectedness. It has been
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Figure 1. Generic network architectures: K4-ladder (top) and K3-cylinder (bottom). Links and
nodes are identified by their reliabilities: an, bn, etc for links, and Sn, Tn and Un for nodes. The
source is S0, the possible destinations are Sn, Tn or Un. A missing link or node’s reliability is
simply set to zero.

used in modelling epidemics or fire propagation [7, 8]. This approach is complementary to
the effort recently devoted on complex networks, in which the network resilience, i.e., its
robustness against link or node failures (sometimes following deliberate attacks), has been
studied for ‘scale-free’ random graphs [14].

Exact reliability calculations are known to be very difficult [15], except for series–
parallel reducible graphs for which only successive simplifications {pseries = p1p2, pparallel =
p1//p2 = p1 + p2 −p1p2} are needed. Even for planar graphs with identical edge reliabilities
p and perfect nodes (i.e., pnode ≡ 1), their algorithmic complexity has been classified as #P-
hard [5, 16]. Yet, the development of Internet traffic makes it important to assess the overall
reliability of network connections, when links and nodes may fail.

In this work, we show that for a network represented by an undirected graph G, the two-
terminal reliability may be expressed as a product of transfer matrices, where individual edge
and node reliabilities are exactly taken into account. Such a factorization, already observed
for graph colouring polynomials [4, 11], 2D-percolation in square strips [17] or all-terminal
reliability polynomials [9, 10], originates with the underlying algebraic structure of the graph.
We apply our method to the two examples (Kn is the complete graph with n nodes) of
figure 1. The K4-ladder describes a generic architecture for long-haul connections, while the
K3-cylinder slightly generalizes the ‘sponge model’ of width three by Seymour and Welsh
[18]. When edge and node reliabilities are respectively equal to p and ρ, a unique transfer
matrix is involved; its largest eigenvalue determines the asymptotic power-law behaviour of
reliability as a function of the ladder length. The location of the complex zeros of Rel2(p)

exhibits striking structure transitions as ρ decreases from one to zero. We illustrate the variety
of behaviours for the above-mentioned graphs. For the sake of completeness, we finally give
the matrix decomposition for the all-terminal reliability of the K4-ladder with arbitrary edge
reliabilities (the uniform case has already been treated by Chang and Shrock [9]).
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Figure 2. First step of the pivotal decomposition: the removal of edge bn. Three structurally
identical, secondary graphs are obtained.

2. Graph decomposition

The gist of our method is to simplify the graph by removing links of the nth (last) elementary
cell of the network, namely the edges and nodes indexed by n, a procedure called pivotal
decomposition or deletion–contraction [5]. If the end terminal t (which can be regarded as
perfect) is connected to node u through edge e, with respective reliabilities pu and pe, then

Rel2(G) = (1 − pe) Rel2(G\e) + pepu Rel2(G · e) + pe(1 − pu) Rel2(G\u), (1)

where G\e and G\u are the graphs where e or u has been deleted, and G · e the graph where
t and u have been merged through the ‘contraction’ of e; (1) merely sums probabilities of
disjoint events. This procedure, along with standard series–parallel reductions, is repeated for
the three (instead of the usual two) secondary graphs in order to take advantage of a structural
recursivity of the graph. After a finite number of such reductions, we get replicas of the
original graph, albeit with one less elementary cell and with the (n − 1)th cell’s edge and
node reliabilities possibly renormalized by those of the nth cell or set to either zero or one. In
order to ensure the existence of a recursion relation, the graph structure must be closed under
successive applications of (1); it may initially require the use of extra edges with symbolic
reliabilities, so that all nodes of an elementary cell are connected pairwise, even if such links
do not exist in the graph under consideration. At this point, a recursion hypothesis is needed,
giving for instance Rel2(S0 → Sn) as a sum over specific polynomials in the reliabilities
indexed by n; these are often obvious from the n = 2 value. Going from n − 1 to n provides
the transfer matrix linking the prefactors of the polynomials, because Rel2 is an affine function
of each component reliability; the (often trivial) n = 1 case serves as the initial condition of
the recurrence.

3. Application to the K4-ladder

Let us first illustrate this method by calculating Rn = Rel2(S0 → Sn) for the K4-ladder (top of
figure 1). Following the guidelines of the preceding section, we first consider bn for deletion as
detailed in figure 2. Note that the three secondary graphs have essentially the same structure.
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The renewed application of (1) leads to two families of contributions. The first one is a sum
of Rn−1-like terms with prefactors, in which the ‘old’ an−1, . . . , Tn−1 are renormalized by one
or more of the ‘new’ an, . . . , Tn. The second one is a sum of Rel2(S0 → Tn−1)-like terms.
There is no need for coupled recursion relations for the two destinations Sn and Tn, since they
are essentially identical through the permutations an ↔ en, cn ↔ dn and Sn ↔ Tn. Rn may
be expressed as the sum of five polynomials in an, . . . , Tn (see below). The five prefactors
at step n are obtained from those at step n − 1 by a recursion relation which translates as a
5 × 5 transfer matrix (such calculations are routinely performed by mathematical software).
The value of R1 leads to

Rn = (1 0 0 0 0)MnMn−1 · · · M1M0

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ , (2)

where Mi’s coefficients Mkl are (x ≡ 1 − x)

M11 = (ai + bieiTi − aibieiTi)Si, (3a)

M12 = (di + biciTi − dibiciTi)Si, (3b)

M13 = aidiSi + bi(χi + ciei)SiTi, (3c)

M14 = −M44 = aieiM42, (3d)

M15 = −M45 = cidiM41, (3e)

M21 = (ei + biaiSi − eibiaiSi)Ti, (3f )

M22 = (ci + bidiSi − cibidiSi)Ti, (3g)

M23 = cieiTi + bi(χi + aidi)SiTi, (3h)

M24 = −M54 = aieiM52, (3i)

M25 = −M55 = cidiM51, (3j )

M31 = −(aibi + aiei + biei − 2aibiei)SiTi, (3k)

M32 = −(bici + bidi + cidi − 2bicidi)SiTi, (3l)

M33 = ((1 − 2bi)χi − bi(ciei + aidi)) SiTi, (3m)

M34 = −M14 − M24, (3n)

M35 = −M15 − M25, (3o)

M41 = aibieiSiTi, (3p)

M42 = bicidiSiTi, (3q)

M43 = bi(χi + ciei)SiTi, (3r)

M51 = aibieiSiTi, (3s)

M52 = bicidiSiTi, (3t)

M53 = bi(χi + aidi)SiTi, (3u)

with χi = ai cidiei +aicidiei −aicidiei . In the n = 0 case, a0 = 1 and c0 = d0 = e0 = 0. The
five above-mentioned polynomials are actually given by the first row of Mn. Rel2(S0 → Tn) is
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given by (2) if the left vector is (0 1 0 0 0). We have here another useful instance of a product
of random matrices [19].

The case of identical reliabilities ai = · · · = ei = p (unless i = 0, see the restriction
above) and Si = Ti = ρ is worth investigating, since only the nth power of a unique matrix
needs be taken. Because of the recursion relation between successive values of Rn, the
generating function G(z) = ∑∞

n=0 Rnz
n is a rational fraction of z. Its denominator D(z) is

derived from the characteristic polynomial of the transfer matrix, taken at 1/z. The numerator
of G(z) is then deduced from the computed first terms of the G(z)D(z)’s expansion. The final
result reads

G(z) = 1

2
ρ(1 − pρ) +

N (z)

D(z)
, (4)

N (z) = 1

2
ρ(1 + pρ) − 1

2
p2ρ3(2 − 10p + 13p2 − 4p3 − p3ρ)z

+ (1 − p)2p5(2 − 4p + p2)(1 − ρ)ρ5z2, (5)

D(z) = 1 − pρ(2 + 4pρ − 14p2ρ + 13p3ρ − 4p4ρ)z

+ 2(1 − p)p3ρ3(2 − 7p + 4p2 + 7p2ρ − 10p3ρ + 5p4ρ − p5ρ)z2

− 4(2 − p)(1 − p)3p6(1 − ρ)ρ5z3. (6)

Equations (4)–(6) are simpler for perfect nodes, because the denominator is of degree 2 in z;
a partial fraction decomposition provides

Rn = 1 − p

2
δn,0 + a+λ

n
+ + a−λn

−, (7)

λ± = p

2
[2 + 4p − 14p2 + 13p3 − 4p4 ±

√
A], (8)

a± = 1 + p

4
± 2 + 2p + 10p2 − 27p3 + 19p4 − 4p5

4
√
A

, (9)

A = 4 + 32p2 − 204p3 + 452p4 − 516p5 + 329p6 − 112p7 + 16p8. (10)

As n grows, Rn ≈ a+λ
n
+: the two-terminal reliability exhibits a power-law behaviour, the

scaling factor being λ+, the eigenvalue of largest modulus. Alternatively, Rn ∼ exp(−n/ξ),
where ξ = −1/ ln(λ+) is the correlation length of percolation theory [7].

The location of the zeros of Rel2(p) in the complex plane is also worth investigating.
The situation differs from that for chromatic [4, 11] and all-terminal polynomials [9], because
Rel2(p) is not a graph invariant. However, the node reliability ρ is an extra parameter that
has a deep impact on the curves to which the zeros of Rel2(p) converge as n → ∞. The
critical values of ρ at which shape transitions occur may be deduced [20] from the three
roots of D(1/z). The straightforward but tedious procedures used to determine these values,
along with a few asymptotic expansions as ρ → 0, are outlined in the appendix (they are
also applied to the K3-cylinder configuration). We limit ourselves to the final results in the
following sections.

A sample of the richness of behaviour is displayed in figures 3–6 for the K4-ladder and
decreasing values of ρ. We initially observe four well-separated ‘curves’ that merge into two
when ρ is exactly equal to 0.8 (see figure 4) and separate again. When ρ further decreases,
other isolated zeros appear, as in figure 6. These zeros occur in pairs, the separation of which
vanishes exponentially with n, and converge to roots of the algebraic equation

0 = 2 + 2ρ + 4(3ρ + 1)ρp − (40ρ + 11)ρp2 + (45ρ + 4)ρp3 − 20ρ2p4 + 3ρ2p5. (11)
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Figure 3. Location of the complex zeros of the two-terminal reliability polynomial Rn(p, ρ) for
n = 150 and ρ = 1.
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Figure 4. Same as figure 3, with ρ = 0.8.
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Figure 5. Same as figure 3, with ρ = 0.5.

Equation (11) is obtained by ensuring that N (z) and D(z) have a common root. The
true limiting isolated points are such that this root is the eigenvalue of greatest complex
modulus at the given p and ρ. Actually, the triplet of figure 6 appears only when
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Figure 6. Same as figure 3, with ρ = 0.01.

ρ < ρc1 ≈ 0.175 221 381 869, where ρc1 is a solution of (see the appendix)

0 = −32 768 − 198 656ρ + 3990 544ρ2 − 12 843 528ρ3 + 16 258 037ρ4 − 6757 568 ρ5

− 2015 436ρ6 − 575 540ρ7 + 4636 356ρ8 − 3082 436ρ9 + 624 640ρ10, (12)

whereas the associated pc1 ≈ −0.604 692 601 721 is a solution of

0 = 40 − 364p + 1064p2 − 700p3 − 1946p4 + 4296p5

− 3465p6 + 1074p7 + 146p8 − 176p9 + 32p10. (13)

If ρc1 < ρ < ρc2 ≈ 0.406 657 811 123 (the algebraic equation satisfied by ρc2 is actually of
degree 65 in ρ), only the two rightmost isolated points are present.

The leftmost isolated point, located on the real negative axis, is asymptotically given
by −(2ρ)−1/3 + 25/24 + O(ρ1/3); for the other two, ρ must be replaced by ρ e±2 iπ . By
contrast, the algebraic curves’ asymptotic limit is a circle of radius (2ρ)−1/4 centred at
(27/32, 0), demonstrating a different power-law behaviour with ρ. Finally, a third critical
value ρc3 ≈ 0.491 370 68 also appears, for which we have not been able to find the defining
algebraic equation satisfied by ρ (its degree is likely to be large); at this value, there is an
asymptotic (anti-)crossing of the curves in the vicinity of p ≈ 1.555 334 45 + i0.553 145 82.

4. K3-cylinder

In the second architecture of figure 1, S0 is still the source while Sn, Tn and Un are the three
possible destinations (the last two are equivalent through a permutation of variables). The
crucial point is to take all fi �= 0, because in the successive applications of (1), the merging
of nodes entails a secondary graph in which Sn−1 and Un−1 are connected. As mentioned
above, the dummy—with respect to the Manhattan-like strip—link fn between Sn and Un

must therefore be present right at the start; this allows us to unveil the coupled recursion
relations between the source and all the destinations. Each source–destination reliability is
a sum of eight polynomials in reliabilities indexed by n. This could lead to 24 × 24 transfer
matrices M̃i . However, several rows of these matrices, if not identical, are linearly dependent;
rearrangements of terms actually reduce their size to 13 × 13, even when fi = 0.

The final result reads

R̃n = vLM̃nM̃n−1 · · · M̃1M̃0vR, (14)
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Figure 7. Complex zeros of the two-terminal reliability polynomial for the K3-cylinder,
fi = 0, n = 100 and ρ = 1.

where vR is the column vector defined by (vR)k = δk1 for 1 � k � 13 (using the Kronecker
notation: δkl is equal to 1 if k = l and 0 if k �= l), and vL is a row vector which depends on
the destination:

(
vSn

)
k

= δ1k,
(
vTn

)
k

= δ2k and
(
vUn

)
k

= δ3k . The matrix elements are much
lengthier than in (3a)–(3u) and are given in the appendix for the sake of completeness.

4.1. fi = 0

Following the procedure outlined in the preceding section, we can compute the new generating
function. For perfect nodes, G̃(S0 → Un) is given by Ñ /(D̃1D̃2):

Ñ = p2 − (1 − p)p4(3 + 3p − 4p2)z + (1 − p)3p6(2 + 11p − 3p2 − 2p3)z2

+ (1 − p)3p8(2 − 4p + 3p2 + 11p3 − 13p4 + 3p5)z3

− (1 − p)4p10(3 + 6p − 12p2 + 10p3 − 10p4 + 4p5)z4

+ (1 − p)6p12(1 + 8p − p2 − 5p3 − p4 + p5)z5

− (1 − p)8p15(2 + 5p − 4p2)z6 + (1 − p)10p18z7, (15)

D̃1 = 1 − (1 − p2)p(1 + p − p2)z + (1 − p)2p3(1 + p + p2 − 2p3)z2 − (1 − p)4p6z3, (16)

D̃2 = 1 − p(2 + 2p + p2 − 9p3 + 5p4)z + (1 − p)p2(1 + 5p + 5p2 − 6p3 − 15p4

+ 13p5 + p6 − 2p7)z2 − (1 − p)2p4(2 + 6p + 6p2 − 26p3 + 17p4

− 18p5 + 27p6 − 16p7 + 3p8)z3 + (1 − p)4p6(1 + 6p + 4p2 − p3 − 17p4

+ 9p5 + 3p6 − 2p7)z4 − (1 − p)6p9(2 + 4p + p2 − 7p3 + 3p4)z5

+ (1 − p)8p12z6. (17)

When ρ �= 1, the degrees of Ñ , D̃1, D̃2 are still 7, 3 and 6, respectively; their expressions are
only lengthier.

The eigenvalue of greatest modulus λmax involved in the asymptotic power-law behaviour
obeys D̃2(1/λmax) = 0. The degree of the denominator leads us to expect that the ‘width’ of
the network should drastically affect the size of the transfer matrices.

The associated complex zeros are displayed for various values of ρ in figures 7–9. The
overall structure is more complicated than that for the K4-ladder, but some features are quite
similar.
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Figure 8. Same as figure 7, with ρ = 0.6.
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Figure 9. Same as figure 7, with ρ = 0.1.

A segment of the real axis appears as a limit curve when 0.420 2958 < ρ < 0.809 2264.
These critical values obey different criteria. Indeed, the higher one (with the associated
critical, real p ≈ 1.530 396 59) occurs when two complex roots of D̃2(z) have the same
(lowest) modulus as a real negative root of D̃1(z). By contrast, the lower critical value
0.420 2958 appears when D̃2(z) exhibits two complex roots and a real positive root with the
same modulus (the critical p is about 1.836 3587).

What happens when ρ → 0? The outermost parts of the curves tend asymptotically to a

circle of radius (5−√
17)1/4√
2ρ

, i.e., approximately 0.684 261√
ρ

. The closed curve on the left survives.

For instance, a triple point pt goes asymptotically as ± ia√
ρ

+ b, with a ≈ 0.461 0389 and

b ≈ −0.0845 7522 (a2 is a root of a polynomial of degree 10, and b is a rational fraction of
a). From each of these points, two curves head back to the origin. One of them crosses the
imaginary axis at p ∼ ± ia′√

ρ
, with a′ ≈ 0.335 299 87 (a′2 is actually the root of a polynomial

of degree 17).

4.2. fi �= 0

In this case, the generating function G̃′(S0 → Un) is now equal to Ñ ′/(D̃′
1D̃′

2), where for
perfect nodes
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Figure 10. Complex zeros of the two-terminal reliability polynomial for the K3-cylinder,
fi �= 0, n = 100 and ρ = 1.
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Figure 11. Same as figure 10, with ρ = 0.3.

Ñ ′ = p(1 + p − p2) − (2 − p)(1 − p)2p3(1 + p)(1 + 3p − 3p2)z

+ (1 − p)5p5(1 + 10p + 8p2 − 5p3 − 2p4)z2

− (1 − p)6p8(3 + 8p − 25p2 + 9p3 + 4p4 − p5)z3

+ (1 − p)8p11(1 − 2p)(3 + 3p − 7p2 + 2p3)z4

− (1 − p)11p14(1 − 3p + p2)z5, (18)

D̃′
1 = 1 − (1 − p)2p(1 + p)(1 + p − p2)z + (1 − p)4p3(1 + p + p2 − 2p3)z2

− (1 − p)7p6z3, (19)

D̃′
2 = 1 − p(1 + 3p + 4p2 − 23p3 + 23p4 − 7p5)z

+ (1 − p)2p3(1 + 6p + 2p2 − 9p3 − 8p4 + 16p5 − 6p6)z2

− (1 − p)4p6(2 + 4p + p2 − 15p3 + 12p4 − 3p5)z3 + (1 − p)7p9z4. (20)

Note that D̃′
2 is of degree 4 in z (even when ρ �= 1), so that a complete analytical solution

for the two-terminal reliability could be obtained—but would be very cumbersome.
The location of complex zeros is displayed in figures 10–12. Critical values of different

nature occur in this case. Two isolated zeros exist as long as 0.363 312 2889 < ρ � 1. They
do not survive in the ρ → 0 limit, in contrast with the K4 case. For ρ ≈ 0.363 312 2889, they
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Figure 12. Same as figure 10, with ρ = 0.01.

merge with a continuous curve at p ≈ 1.466 816 ± i0.582 3927. For these isolated points, the
relevant p and ρ obey the polynomial constraint

0 = −2(1 − 2p)(1 + 5p − 4p2) − p(1 + 39p − 172p2 + 316p3 − 230p4 + 56p5)ρ

+ p2(12 + 42p − 416p2 + 947p3 − 899p4 + 382p5 − 60p6)ρ2

+ p3(27 − 45p + 33p2 − 90p3 + 135p4 − 77p5 + 15p6)ρ3, (21)

the origin of which is similar to that of (11).
Another feature is the segment on the real axis (see figure 11) which occurs when

0.016 301 418 < ρ < 0.831 402 45. These two critical values are actually solutions of
a polynomial in ρ of degree 95, and the associated critical p’s, namely 1.606 389 89 and
4.560 131 68, are also roots of a polynomial in p of degree 95. These transitions occur when
the equation D̃′

2(z) = 0 has a double, real (negative) root, the opposite of which is also a root.
As in the preceding subsection, the global structure expands as ρ → 0. The outer curves

tend asymptotically to a circle of radius 1
71/5ρ2/5 ≈ 0.677 611ρ−2/5. The closed curve on the

left also survives (see figure 12). Here again, it crosses the imaginary axis asymptotically at
p ∼ ±i

(
10−1/6

ρ1/3 − 3
5
√

10

)
.

5. Transfer matrices for the all-terminal reliability RelA

Nodes may be viewed as perfect in this case since the node reliabilities can be factored out,
and simpler calculations may be done because (1) has one less term. For the K4-ladder, the
transfer matrix is 2 × 2:

RelA(n) = (1 0)M̂nM̂n−1 · · · M̂0

(
1
0

)
. (22)

The matrix elements (M̂i)kl of M̂i are (x ≡ 1 − x)

(M̂i)11 = [(ai + ei)(ci + di) − 2aicidiei]bi + [(ai//ei) + (ci//di)]bi, (23)

(M̂i)12 = aicidiei

[
1

ai

+
1

ci

+
1

di

+
1

ei

− 3

]
bi + [(ai//ei)(ci//di)]bi, (24)

(M̂i)21 = [(ai//ci) + (di//ei) − 2(aiei//cidi)]bi − (M̂i)11, (25)

(M̂i)22 = (ci + di − 2cidi)(ai + ei − 2aiei)bi − (M̂i)12, (26)
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in M̂0, a0 = 1 and c0 = d0 = e0 = 0. This is a special case of a multivariate Tutte polynomial
[21]. If ai = · · · = ei ≡ p (0 � i � n), we recover Chang and Shrock’s result (appendix 4.2
of [9]) ĜA(z) = N̂A(z)/D̂A(z) with

N̂A(z) = p + p3(1 − p)(4 − 3p)z, (27)

D̂A(z) = 1 − p2
(
12 − 26p + 21p2 − 6p3

)
z + 2p5(1 − p)3 (2 − p) z2. (28)

The asymptotic power-law scaling factor is controlled by ζ+ = 1
2p2(12 − 26p + 21p2 − 6p3 +√

B) with B = 144 − 640p + 1236p2 − 1308p3 + 793p4 − 260p5 + 36p6.

6. Conclusion and perspectives

The two-terminal reliability of undirected networks may be expressed by a product of transfer
matrices, in which each edge and node reliability is exactly taken into account. This result
is easily extended to the all-terminal reliability with nonuniform links, as well as to directed
graphs. We can now go beyond series–parallel simplifications and look for new (wider)
families of exactly solvable, meshed architectures that may be useful for general reliability
studies (as building blocks for more complex networks), for the enumeration of self-avoiding
walks on lattices and for percolation with imperfect bonds and sites. Since the true generating
function is itself a rational fraction, Padé approximants should provide efficient upper or lower
bounds for these studies. Moreover, individual reliabilities can be viewed as average values
of random variables. Having access to each edge or node allows the introduction of disorder
or correlations in calculations. The location of complex zeros of the two-terminal reliability
polynomials exhibits numerous structure transitions, with the possible occurrence of isolated
points, convergence to segments of the real axis, and also an expansion from the origin as
ρ goes to 0 which obeys power-law behaviours with rational exponents which may differ
strongly for seemingly not too dissimilar graphs. All critical values of the node reliability
are actually algebraic values. Finally, in a more applied perspective, let us mention that the
failure frequency ν of a given connection is another important performance index of networks.
If equipment i with reliability pi has a failure rate λi, ν = ∑

i λipi∂ Rel2/∂pi . The matrix
factorization makes the calculation straightforward, since each pi appears in one transfer
matrix only.
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Appendix A. A few recipes on the determination of the complex zeros of two-variate
polynomials

Our method relies on well-known results for the zeros of recursively defined one-parameter
polynomials [4, 9, 11, 20]. Since we are dealing here with two-variate (p, ρ) polynomials,
let us outline the procedure used to obtain the figures, the critical values and the asymptotic
expansions given in the text.
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A.1. Determination of the two-variate polynomial

As shown by many published studies, the convergence of the zeros to limiting sets of algebraic
curves is already apparent for n roughly equal to 50. To be on the safe side, we calculated
these polynomials for n = 100 or n = 150 in order to (i) be very close to the asymptotic
limit, (ii) get a good sampling of the zeros, since—especially in the small-ρ limit—they are
not uniformly distributed over the asymptotic curves when n → ∞ (see figures 7–9 and 12).

We have calculated these polynomials using MATHEMATICA and recursion relations based
on the denominator of the generating function. If

D(z) = 1 + b1(p, ρ)z + b2(p, ρ)z2 + · · · + bm(p, ρ)zm, (A.1)

then

Rel(n)
2 = −b1(p, ρ)Rel(n−1)

2 − b2(p, ρ)Rel(n−2)
2 − · · · − bm(p, ρ)Rel(n−m)

2 . (A.2)

Knowledge of the first m polynomials deduced from the generating function allows the quick
determination of Rel(n)

2 for a given ρ. ρ has not been kept as a parameter because of the
explosion in the number of terms, but has been given rational values in order to prevent
numerical errors; this gives polynomials with integral coefficients that may be very large
(hundreds of digits sometimes). Their zeros have been obtained using MATHEMATICA’s routine
NSolve, the accuracy of which must be set accordingly (higher than hundreds of digits).

A.2. Limiting curves and isolated zeros

The zeros of recursively defined (one-parameter) polynomials mostly tend to aggregate close
to curves such as (at least) two eigenvalues have the same modulus (the largest one for all the
eigenvalues). Assuming that the ratio of the two eigenvalues is equal to eiθ , we can write

D(z) = (1 − ζ eiθ/2z)(1 − ζ e−iθ/2z)(1 − b̃1z − · · · − b̃m−2z
m−2), (A.3)

which must be compared with (A.1). Elimination of ζ and b̃k’s leads to a (polynomial)
relationship between p, ρ and even powers of t = cos(θ/2). Replacing t by the more practical
T = cos θ gives a polynomial constraint C(p, ρ, T ) = 0. However, the true limiting curves
are defined by only a subset of this constraint’s many solutions for a given ρ and T ranging
from −1 to +1, because |ζ | must be the largest. In this context, it does no harm to investigate
special points of these curves.

A.2.1. Double roots of D(z) = 0. In our case studies, the endpoints of the limiting curves
are such that both roots are equal (θ = 0 or equivalently T = +1): they are thus obtained from
a subset of the solutions of Ĉ(p, ρ) = C(p, ρ, T = +1) = 0. For the K4-ladder with ρ = 1,
this leads to

0 = (2 − p)2(1 − p)4(1 − p + p2)2

× (4 + 32p2 − 204p3 + 452p4 − 516p5 + 329p6 − 112p7 + 16p8) (A.4)

which gives the true endpoints of figure 3: −0.117 5415 ± i0.204 1183, 0.760 9223 ±
i0.587 7642, 1.343 654 ± i0.345 6238 and 1.512 965 ± i0.493 1547 (all the solutions are
actually roots of the polynomial of degree 8). A quicker way to find these endpoints is
to investigate when D(z) and ∂D(z)

∂z
are both equal to zero. Elimination of z from these

two equations leads to the desired Ĉ(p, ρ) or, more accurately, to a product of two-variate
polynomials. Confrontation with numerical estimates of the zeros allows us to remove spurious
solutions.
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A.2.2. Opposite roots of D(z) = 0. While they are usually not associated with remarkable
points in the numerical plots of the complex zeros, they are nonetheless quite useful. Indeed,
they pinpoint the limiting curves and can be obtained more easily because they satisfyD(z) = 0
and D(−z) = 0. Considering the even and odd components of D(z) as functions of Z = z2

and performing the elimination of Z gives a new constraint C̃(p, ρ), which is nothing but
C(p, ρ, T = −1) = 0. This task is simpler because the degree of the polynomials has been
divided by two (this definitely helps because even computer-assisted computations become
ugly when the degree of D(z) increases). A few real zeros may correspond to opposite roots.
For the K4-ladder with ρ = 1,− 0.243 0623 and 1.527 648 are indeed two such examples
of intersections of the curves with the real axis, which may ultimately be tracked down to
solutions of −2 − 4p + 14p2 − 13p3 + 4p4 = 0 (see figure 3).

A.2.3. Real roots and segments on the real axis. They are frequent features of the complex
zeros’ structure. We mentioned in the previous paragraph that algebraic curves may intersect
the real axis at a given p, the location of which can be traced back to particular roots of
D(z) = 0. Whole segments of the real (positive or negative) axis may also occur for some
graphs (see figures 8 and 11). It happens when, for a fixed ρ, two complex conjugate
eigenvalues have the largest modulus for an extended range of real p’s. The proper assessment
of the endpoints of this segment generally requires careful, numerical tests of the roots of
D(z) = 0. The existence of segments of the real axis may be restricted to a limited range of
ρ’s or may persist down to ρ → 0; it depends on the graph under consideration. When an
algebraic curve (and its symmetrical twin with respect to the real axis) crosses the real axis, we
have C(p, ρ, T ) = 0 and ∂C

∂p
(p, ρ, T ) = 0, because p is a double (real) root at the intersection.

The elimination of T gives another polynomial constraint between p and ρ.

A.2.4. Isolated zeros, intersections with the imaginary axis and roots of higher order. Isolated
zeros correspond to values of p and ρ such that the residue of the generating function—taken
at one of the eigenvalues of largest modulus—simply vanishes. This implies that D(z) and
N (z) are both equal to zero. Here again, the elimination of z gives a constraint between p and
ρ. In the K4-ladder and the K3-cylinder with fi �= 0, this leads to (11) and (21), respectively.

In a few cases (see figures 7 and 10), algebraic curves intersect the imaginary axis, even
for vanishing ρ. Noting that if p is a solution, then so is −p, we get a new constraint allowing
the elimination of T.

In yet other instances, sets of algebraic curves join at triple points (see figures 7–9). This
occurs when three roots of D(z) = 0 have the same modulus. These points are usually harder
to pinpoint in practice, especially away from the real axis.

A.3. Critical values

Changes—sometimes quite drastic—in the global structure of the complex zeros occur at
particular values of ρ: the apparition or disappearance of real segments, isolated zeros and
small closed curves. These changes take place when, as ρ varies, different pairs of eigenvalues
have the largest modulus. Such a situation may be described in the following, simplified
way. Let us assume that a particular point of the complex zeros’ structure is described by
C1(p, ρ) = 0. As ρ decreases, this feature’s origin changes and can be traced back to another
constraint C2(p, ρ) = 0. At the critical (pc, ρc), both constraints must be satisfied. The
elimination of one variable among p and ρ leads to the desired critical value. Since ρ is
kept real, we usually eliminate p. Not surprisingly, ρc is a root of an algebraic equation,
the degree and (integral) coefficients of which may become quite large. For instance, let us
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consider the apparition of the third isolated zero in the K4-ladder configuration. Its existence
is based on (11), which is apparently satisfied for ρ � ρc. When ρ is slightly smaller than ρc,
the isolated zero—which remains on the real axis—approaches the leftmost algebraic curve,
which intersects the real axis at a point such that C(p, ρ, T = −1) = 0. ρc and the associated
pc are therefore defined by their obeying the following two conditions, (11) and

0 = 4 − 14p + 8p2 + (8p − 46p2 + 130p3 − 153p4 + 80p5 − 16p6)ρ

+ (4p2 + 18p3 − 130p4 + 249p5 − 232p6 + 119p7 − 33p8 + 4p9)ρ2. (A.5)

The elimination of either p or ρ leads to the defining algebraic equation for the remaining
parameter, which can be expressed as a product of polynomials. Comparison with the
numerical data (one can always bracket ρc or pc by trial and error) allows us to select
the relevant polynomial, given in (12) and (13).

Obviously, the elimination procedure, which heavily relies on computer software
(MATHEMATICA in the present case), works best when the degrees (in the variables to be
eliminated) of the polynomials are not too large. A point may be worth mentioning: finding
critical values involving only real ρc and pc is usually much easier than for a real ρc and
complex conjugate pc’s, because pc is associated with Tc which is seldom equal to ±1.
We have been able to calculate the critical ρc corresponding to the apparition of the first
two isolated (complex conjugate) zeros for the K4-ladder, by considering the conditions
C(p, ρ, T ) = 0 and (11), which can be decomposed in real and imaginary parts. This gives
four equations and four parameters, namely ρ, T , Re(p) and Im(p). While it does not present
any conceptual difficulty, this task may become numerically challenging since after each
elimination procedure, the degrees in the remaining variables have a tendency to ‘explode’.
Suffice it to say that the polynomial defining this critical ρc is of degree 65, much larger than
the degree 10 exhibited by (12) and (13).

A.4. Asymptotic expansions

Our general method is to first assess numerically the expansion rate of the different
substructures, which must behave as a negative fractional power of ρ (because of the
polynomial constraints in p and ρ). This can be done by calculating the complex zeros
for ρ equal to 10−3, 10−6, etc. For instance, we infer from numerical calculations that the
isolated zeros move from the origin with an expansion rate proportional to ρ−1/3. Setting
p = χρ−1/3 in (11) gives to lowest order 0 = 2 + 4χ3 + O(ρ1/3) and implies that χ3 = − 1

2 .
The leading term is therefore easily obtained, down to its prefactor (note the symmetry of order
3 lying at the heart of the triplet of isolated zeros). The following terms of the asymptotic
expansion may be deduced iteratively in a straightforward way.

As regards the sets of algebraic curves, the procedure is identical, with possibly different
exponents. The ‘best’ equation to start with is obtained for opposite roots (see above). For
instance, setting p = χρ−1/4 in (A.5) gives 0 = 8χ2 1−2χ4

√
ρ

+ O(ρ−1/4), implying χ4 = 1
2 .

Note that because the asymptotic structure is not strictly circular, the following terms of
the expansion may depend on the argument (not only on the modulus) of the leading term of
χ . Finally, in such cases as the K3-cylinder with fi = 0, the above procedure gives several
possible analytical solutions for χ with an expansion rate in ρ−1/2, with very close numerical
values which makes the correct identification of the true prefactor quite tedious. After careful

numerical tests, we finally identified the expansion rate as (5−√
17)

1/4

√
2ρ

.
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Appendix B. Transfer matrix for the K3-cylinder

The elements mk,l of the 13 × 13 transfer matrix M̃i are

m1,1 = aiSi

m1,2 = ciSiTi(bi + difiUi − bidifiUi) = −m4,2

m1,3 = eiSiUi(fi + bidiTi − bidifiTi)

= −m5,3 = −m11,3

m1,4 = aim1,2 = m2,4

m1,5 = aim1,3 = m3,11 = −m5,11 = −m11,5

m1,6 = aicieiSiTiUi(di + bifi − bidifi) = −m11,6

m1,7 = cieiSiTiUi(bidi + bifi + difi − 2bidifi)

= m13,7 = −m4,7 = −m11,7

m1,8 = aim1,7 = m2,6 = m2,8 = m3,13 = m8,13

= −m5,13 = −m7,13 = −m9,6 = −m9,8 = −m11,8

m2,1 = aiSiTi(bi + difiUi − bidifiUi) = −m4,1

m2,2 = ciTi

m2,3 = eiTiUi(di + bifiSi − bidifiSi)

= −m7,3 = −m9,3

m2,5 = aieiSiTiUi(bidi + bifi + difi − 2bidifi)

= −m9,5

m2,9 = cim2,3 = m3,9

m2,10 = ai(1 − bi)ci(1 − di)eifiSiTiUi

= m8,10 = m9,12 = m13,10 = −m4,10

= −m7,10 = −m9,10

m3,1 = aiSiUi(fi + bidiTi − bidifiTi)

= −m5,1 = −m11,1

m3,2 = ciTiUi(di + bifiSi − bidifiSi)

= −m7,2 = −m9,2

m3,3 = eiUi

m3,4 = aiciSiTiUi(bidi + bifi + difi − 2bidifi)

m3,12 = aicieiSiTiUi(bi + difi − bidifi)

= m8,12 = −m5,12 = −m7,12

m4,3 = −eiSiTiUi(bidi + bifi + difi − 2bidifi)

= −m13,3

m4,4 = aiciSiTi(1 − 2bi − 2difiUi + 2bidifiUi)

m4,5 = aieiSiTiUi(di − 2bidi − bifi − 2difi + 3bidifi) = −m13,5

m4,6 = aicieiSiTiUi(−bidi + fi − 2bifi − 2difi + 3bidifi) = −m13,6

m4,8 = aicieiSiTiUi(di − 2bidi + fi − 2bifi − 3difi + 4bidifi) = −m13,8

m4,9 = (1 − bi)ci(1 − di)eifiSiTiUi = m12,9

m5,2 = −ciSiTiUi(bidi + bifi + difi − 2bidifi)
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= m11,2

m5,4 = aiciSiTiUi(di − 2bidi − bifi − 2difi + 3bidifi) = m11,4

m5,5 = aiei(1 − fi)SiUi(1 − bidiTi) = m11,11

m5,6 = aibici(1 − di)ei(1 − fi)SiTiUi

m5,7 = ci(bi + di − 2bidi)ei(1 − fi)SiTiUi

m5,8 = aim5,7 = m10,6 = m10,8 = m11,13

m5,9 = −cieiSiTiUi(di + bifi − bidifi)

m6,2 = (1 − bi)ci(1 − di)fiSiTiUi = m12,2

m6,3 = bi(1 − di)ei(1 − fi)SiTiUi = m10,3

m6,4 = aim6,2

m6,5 = aim6,3 = m9,11

m6,6 = aici(1 − di)ei(1 − bifi)SiTiUi

m6,7 = ci(1 − di)ei(bi + fi − 2bifi)SiTiUi

m6,8 = aim6,7 = m7,6 = m7,8 = m9,13

m7,1 = −aiSiTiUi(bidi + bifi + difi − 2bidifi)

= m9,1 = −m8,1

m7,4 = aiciSiTiUi(−bidi + fi − 2bifi − 2difi + 3bidifi) = m9,4

m7,5 = ai(1 − di)ei(bi + fi − 2bifi)SiTiUi

m7,9 = cieiTiUi(1 − 2di − 2bifiSi + 2bidifiSi)

= m9,9

m7,11 = −aieiSiTiUi(bidi + fi − bidifi) = −m8,11

m8,2 = −ciSiTiUi(−bidi + fi − 2bifi − 2difi + 3bidifi) = m13,2

m8,3 = −eiSiTiUi(bi − 2bidi − 2bifi − difi + 3bidifi)

m8,4 = −aiciSiTiUi(di − 2bidi + 2fi − 3bifi − 4difi + 5bidifi)

m8,5 = −aieiSiTiUi(2bi + di − 3bidi + fi − 3bifi − 2difi + 4bidifi)

m8,6 = −2aim6,7

m8,7 = −cieiSiTiUi(2bi + di − 3bidi + fi − 3bifi − 2difi + 4bidifi)

m8,8 = −aicieiSiTiUi(−1 + 3bi + 2di − 4bidi + 3fi − 5bifi − 4difi + 6bidifi)

m8,9 = −cieiSiTiUi(−di + fi − 2bifi − difi + 2bidifi)

m10,1 = ai(1 − bi)di(1 − fi)SiTiUi = m12,1

m10,4 = cim10,1

m10,5 = ai(bi + di − 2bidi)ei(1 − fi)SiTiUi = −m13,11

m10,9 = bici(1 − di)ei(1 − fi)SiTiUi = m11,9

m10,10 = ai(1 − bi)ci(1 − di)ei(1 − fi)SiTiUi

m11,12 = ai(1 − bi)cidiei(1 − fi)SiTiUi

m12,4 = ai(1 − bi)ci(di + fi − 2difi)SiTiUi

m12,11 = eim10,1

m12,12 = ai(1 − bi)ciei(1 − difi)SiTiUi

m12,13 = eim12,4 = −m13,12
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m13,1 = −aiSiTiUi(di − 2bidi − bifi − 2difi + 3bidifi)

m13,4 = −aiciSiTiUi(2di − 3bidi + 2fi − 3bifi − 5difi + 6bidifi)

m13,9 = ci(1 − di)ei(−bi − 2fi + 3bifi)SiTiUi

m13,13 = −aicieiSiTiUi(−1 + 2bi + 2di − 3bidi + 2fi − 3bifi − 3difi + 4bidifi).

All the following matrix elements are equal to zero: m1,9,m1,10,m1,11,m1,12,m1,13,m2,7,

m2,11,m2,12,m2,13,m3,5,m3,6,m3,7,m3,8,m3,10,m4,11,m4,12,m4,13,m5,10, m6,1,m6,9, m6,10,

m6,11,m6,12, m6,13,m7,7, m9,7,m10,2, m10,7,m10,11,m10,12, m10,13,m11,10m12,3,m12,5,m12,6,

m12,7,m12,8,m12,10.
Note that for i = 0, one must set a0 = 1 and c0 = e0 = 0.
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